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Neuroscience is entering a period marked by a rapid expansion in the 
size, scope and complexity of neural data acquired from large portions 
of nervous systems and spanning multiple levels of organization1,2. 
Much of these ‘big data’ represent networks comprising the relations 
or interconnections that link the many elements of large-scale neu-
robiological systems3–6. Examples include protein interaction and 
genetic regulatory networks, synaptic connections and anatomical 
projections among brain areas, dynamic patterns of neural signaling 
and communication associated with spontaneous and task-evoked 
brain activity, and interactions among brain systems and the environ-
ment in the course of behavior. Notably, these data often cross mul-
tiple levels of organization (neurons, circuits, systems, whole brain) 
or involve different domains of biology and data types (for example, 
anatomical and functional connectivity, genetic patterns and disease 
states, activity in distributed brain regions in relation to behavioral 
phenotypes). The size and complexity of these data require sophisti-
cated strategies for statistical inference and dimensionality reduction7 
and present important challenges for scalable computing8, data shar-
ing, and reproducibility9.

These recent developments not only pose challenges, but they also 
provide unique opportunities, as sophisticated empirical methods for 
mapping and recording neurobiological data intersect with theoretical 
and computational advances in data analysis and modeling of brain 
networks. We propose to call the research agenda emerging at this 
intersection ‘network neuroscience’. In this review, we outline the 
fundamentals of network neuroscience and highlight a selection of 
current and future topics. Our emphasis is less on past achievements 
and more on identifying emerging trends that will shape the field 

going forward. We survey new empirical and computational tools and 
discuss how these tools can become useful for attacking long-standing 
complex problems and research frontiers. An important focus is on 
how such tools may help to uncover network structures and processes 
that support integrative brain function and span multiple spatial and 
temporal scales (Fig. 1). We argue that network neuroscience theories 
and tools will bring substantial changes to the types of questions that 
we can ask and the hypotheses that we can test, ushering in a new era 
of network-based inquiry into brain structure and function.

Network mapping and observation
One of the major developments supporting the growth of network 
neuroscience involves the creation of powerful methodologies that 
enable the comprehensive recording of connections and interactions 
in neurobiological systems. What these methodologies have in com-
mon is that they capture large numbers of elements and then record 
all of their interactions in parallel, resulting in data sets that take the 
mathematical form of graphs or networks (Fig. 2). Major advances 
have occurred in the measurements of molecular interactions, the 
mapping of structural connections among neurons and brain areas 
(connectomics), the physiological recordings of activity in ensembles 
of neurons or across the whole brain, the automated classification of 
behaviors, and the tracking of social dynamics.

Building on the as yet unparalleled achievement of mapping the 
neuronal wiring of the nematode C. elegans10, the reconstruction of 
synaptic connectivity among neurons at the ultrastructural level has 
evolved rapidly, as has measurement of extra-synaptic connectivity11. 
Among recent studies in C. elegans12, as well as in the Drosophila 
visual system13, are refined mappings of connections among sensory 
and effector neurons, whose network patterns have offered important 
insights into the specific behavioral contributions of network elements. 
However, the enterprise of ultrastructural connectomics has been chal-
lenged by the sheer size and volume of vertebrate brains14. One of the 
largest efforts thus far has resulted in a connection map of a portion of 
the mouse retina involving the tracing of the neurites of 950 distinct 
neurons15. Although such ‘dense reconstructions’ capture cellular 
architecture in fine detail, they remain vulnerable to reconstruction  
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Despite substantial recent progress, our understanding of the principles and mechanisms underlying complex brain function and 
cognition remains incomplete. Network neuroscience proposes to tackle these enduring challenges. Approaching brain structure 
and function from an explicitly integrative perspective, network neuroscience pursues new ways to map, record, analyze and 
model the elements and interactions of neurobiological systems. Two parallel trends drive the approach: the availability of new 
empirical tools to create comprehensive maps and record dynamic patterns among molecules, neurons, brain areas and social 
systems; and the theoretical framework and computational tools of modern network science. The convergence of empirical 
and computational advances opens new frontiers of scientific inquiry, including network dynamics, manipulation and control 
of brain networks, and integration of network processes across spatiotemporal domains. We review emerging trends in network 
neuroscience and attempt to chart a path toward a better understanding of the brain as a multiscale networked system. 
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errors and require expert curation for reliable detection of synaptic 
couplings. Alternative approaches use RNA barcoding to label projec-
tions of individual neurons, which may allow for high-volume tracing 
of neuronal circuits at single-cell resolution16.

Complementary mesoscale efforts to map more extended portions 
of the nervous systems of several model organisms have employed 
large-scale optical imaging as well as quantitative histological tract 
tracing. High-throughput tracing and imaging approaches (which 
require careful monitoring of sensitivity and specificity) have resulted 
in network data sets recording the connections among ‘local process-
ing units’ in Drosophila17 as well as interregional projections in the 
mouse18. A different approach builds on expertly curated neuroinfor-
matics databases of anatomical observations to construct aggregated 
data sets of network connectivity, such as in rat19 and macaque mon-
key20. Quantitative assessment of tract tracing experiments reveals 
relatively dense networks that include projections ranging in strength 
over six orders of magnitude21. Finally, there is continuous improve-
ment of methodology in diffusion imaging and tractography, which 
allows the inference of the trajectory and strength of white matter pro-
jections in the human brain22. Although subject to many experimental 
and statistical limitations23 and interpretational pitfalls24, compara-
tive studies have suggested that representations of long-distance con-
nectivity derived from invasive histological methods and noninvasive 
imaging of neuroanatomical structure are significantly related25.

Advances in optical cellular imaging have enabled recordings of 
neuronal activity in extended functional circuits26, in some cases 
spanning the whole organism27. Imaging of Ca2+ dynamics, as well 
as genetically encoded fluorescent reporters of membrane voltages, 
generates dynamic functional data from hundreds to thousands of 
neurons. Following processing steps such as image registration and cell 
sorting, the data can be represented as time traces that can be subjected 
to statistical time series analyses. Parallel recordings from hundreds of 
neurons enable computational strategies that identify and character-
ize functional interactions and statistical dependencies between neu-
rons. The resulting functional networks can be examined for modular 
organization, as well as for evidence of coherent network states and 
patterned temporal dynamics. Functional network analysis has pro-
gressed most strongly in applications to noninvasive electromagnetic 
or functional magnetic resonance imaging recordings from the human 
brain. Major themes include the definition of coherent subnetworks 
spanning the whole brain28 that exhibit changing topology in condi-
tions of rest (spontaneous activity) and task demand29, or in relation to 
visual input30. Methodological advances involve improved sensitivity 
in measures of statistical dependence, inference of causal links, and 
greater temporal resolution. An important frontier is the analysis of 
sequences of functional networks that change across time.

Linking elements and interactions in the brain to different domains 
of behavior has advanced from classic univariate (one region, one 
behavior) to bivariate (connectivity, behavior) and finally to multi-
variate frameworks31. Large-scale studies of brain-behavior relations 
and behavior-behavior dependencies, although still in their infancy, 
promise to provide a rich database for mapping the relations among 
brain processes and their contributions to perception, action and cog-
nition. In one such study carried out in Drosophila, the roles of neurons 
in triggering a diverse set of behaviors was systematically investigated 
by optogenetically stimulating individual neuronal cell lines and 
recording the associated behavioral responses32. Machine-learning 
techniques were then applied to extract statistically robust relations 
between neuron lines and behavioral phenotypes, resulting in a neu-
ron-behavior atlas. This work illustrates the utility of using relational 
data to establish mappings from clusters of neural elements to clusters 

of behavioral phenotypes. On a very different organizational scale, 
brain-behavior relations have been approached through meta-analyses 
of large repositories of human neuroimaging experiments reporting 
patterns of brain activation in relation to different domains of behavior 
and cognition. Aggregating brain imaging data from thousands of such 
studies allowed the construction of ‘co-activation networks’, whose 
major components and overall network topology strongly resembled 
functional networks derived from resting-state (task-free) record-
ings33. Finally, as demonstrated in a study of chemotaxis in C. elegans34, 
our understanding of the relationships between neural dynamics and 
observable behaviors can benefit from integrating data capturing the 
topology of anatomical networks with behavioral data acquired as the 
organism is interacting with its environment.

Brain networks may be viewed as ‘intermediate phenotypes’35 that 
are situated between the domains of genetics and molecular systems, 
and the expression of individual and collective behavior in the envi-
ronment. As such, brain networks mediate the causal effect of genet-
ics on behavior and vice versa. For example, genetic mutations may 
cause changes in network topology that in turn drive alterations in 
behavior. Indeed, network science has made substantial advances into 
characterizing both molecular and social systems, and the effect of 
these advances are beginning to be felt at the intermediate scales of 
mesoscale neural circuits and large-scale brain systems.
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Figure 1 Networks on multiple spatial and temporal scales. Network 
neuroscience encompasses the study of very different networks 
encountered across many spatial and temporal scales. Starting from the 
smallest elements, network neuroscience seeks to bridge information 
encoded in the relationships between genes and biomolecules to the 
information shared between neurons. It seeks to build a mechanistic 
understanding of how neuron-level processes give rise to the structure 
and function of large-scale circuits, brain systems and whole-brain 
structure and function. However, network neuroscience does not stop 
at the brain, but instead asks how these patterns of interconnectivity 
in the CNS drive and interact with patterns of behavior: how perception 
and action are mutually linked and how brain-environment interactions 
influence cognition. Finally, network neuroscience asks how all of these 
levels of inquiry help us to understand the interactions between social 
beings that give rise to ecologies, economies and cultures. Rather than 
reducing systems to a list of parts defined at a particular scale, network 
neuroscience embraces the complexity of the interactions between the 
parts and acknowledges the dependence of phenomena across scales. 
Box dimensions give outer bounds of the spatial and temporal scales at 
which relational data are measured and interactions unfold, and over which 
networks exhibit characteristic variations and dynamic changes. Inspired  
by an iconic image of neuroscience recording methods, last updated in ref. 1.  
ECOG, intracranial electrocorticography; EEG, electroencephalography; fMRI, 
functional magnetic resonance imaging; fNIRS, functional near-infrared 
spectroscopy; MEG, magnetoencephalography.
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At molecular scales, the arrival of comprehensive molecular and 
genomic data for many organisms, including humans, has ushered 
in the new discipline of systems biology36, which combines high-
throughput measurements of molecular data with modeling and com-
putational analysis. Systems biology recognizes that most biological 
functions and phenotypes cannot be reduced to the action of individ-
ual proteins or biomolecules, but rather emerge from their interactions 
in molecular complexes and in cells, giving rise to spatiotempo-
ral patterns of gene expression, tissue growth and differentiation,  
and other integrative biological processes. In systems biology, net-
works are core ingredients for analysis and modeling37, for example, 
in proteomics38, mapping of gene-disorder relationships39 and genet-
ics-based comorbidity studies40. The architecture of these networks 
at the molecular scale affects higher order functions measured at 
the larger scale of functional brain areas. Here, network interactions 
offer important insights into the biological mechanisms associated 

with several common brain disorders, including schizophrenia41 and 
autism42. Convergent evidence suggests that the biological bases of 
psychiatric illness cannot be fully accounted for by small numbers of 
mutations or risk factors. Instead, these disorders involve disturbances 
in biological networks on multiple spatial scales.

Social data, aggregated into networks, capture important aspects 
of individual and collective behavior. The ubiquity of digital traces 
of human behavior has led to a rapid expansion of computational 
social science43, a new discipline that leverages methods and tools 
from statistical physics and computer science to observe and pre-
dict the collective behavior of organizations and societies. Going 
beyond small-scale analyses of data laboriously gathered from indi-
viduals in laboratory settings, computational social science relies 
on the parallel and pervasive collection of rich spatiotemporal data  
capturing the organization and dynamics of large-scale social sys-
tems. The approach has promise in providing new means to monitor  
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Figure 2 Network measurement, construction and analysis. Top, network neuroscience begins with the collection of relational data among elements of a 
neurobiological system. These data may refer to statistical associations among genes, physical binding events among macromolecules, anatomical networks 
of synaptic connections or inter-regional projections, multi-dimensional time series and their statistical dependencies or causal relations, or links in behavior, 
such as dynamic couplings among sensors and effectors in individuals or collective social interactions. Middle, once collected, relational data are generally 
subject to normalization, artifact and noise reduction before being assembled into the mathematical form of a graph or network, consisting of nodes (elements) 
and edges (their relations). Common examples are transcriptome and interactome networks, connectomes, networks of functional and effective connectivity, 
and social networks. Bottom, the common mathematical framework of graph theory offers a set of measures and tools for network analysis. As we argue in this 
review, descriptive measures such as the ones shown here are but a first step toward more powerful analysis and modeling approaches, such as generative 
modeling, prediction and control. Finally, network data are generally shared in large repositories, and numerous follow-up tool kits allow sophisticated 
visualization and simulation. Continual refinement of measurement, construction and analysis techniques ensures that the shape of this diagram will change 
as the field of network neuroscience matures. Image of functional/effective connectivity reproduced from ref. 70, Society for Neuroscience.
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and enhance behavioral and mental health, such as in individuals  
with major depressive disorder44.

Network analysis and modeling
Networks are phenomena of the natural, social and technological 
world that are studied across many disciplines with a common toolset 
provided by network science45. Perhaps most foundational is graph 
theory, a branch of mathematics that examines the properties of graphs 
or networks, defined as sets of nodes and edges that represent system 
elements and their interrelations46. In neuroscience, descriptive mea-
sures that report on local and global features of network topology have 
been widely applied across structural and functional data sets from 
multiple species. These analyses have consistently revealed nonrandom 
topological attributes, such as high clustering and short path length3,47, 
and network communities (modules) linked by highly connected hub 
nodes48 that are in turn densely linked, forming an integrative core49 
or rich club50. Recent investigations have examined more complex 
organizational features such as hierarchical organization51,52, the role 
of geometry and spatial embedding in large-scale anatomical con-
nectivity53, and the importance of considering relationships among 
multiple structural constraints when accounting for the emergence of 
significant network attributes54. Indeed, the brain is inherently a spa-
tially embedded network, and physical constraints resulting from that 
embedding underlie functionally important network characteristics, 
such as efficient network communication and information processing. 
The application of graph measures has also been critically examined 
with respect to sensitivity to node/edge definition, spatial and tempo-
ral resolution, and reliability and reproducibility across observations55. 
Important issues currently under development involve improved and 
domain-appropriate approaches for module (community) detection56, 
model-based inference of networks from observational data57, and 
statistically principled methods for network comparison across dif-
ferent individuals and in different conditions58.

More recently, methods from network science are expanding in new 
directions, going beyond descriptive accounts of network topology 
and toward addressing network dynamics, generative principles and 
higher order dependencies among nodes. One prominent example is 
the development of methods for assessing multi-scale organization 
in networks. This includes characterizing fluctuations in commu-
nity structure of networks across time59, and implementing dynamic 
processes on networks as a diagnostic tool for explicitly linking 
micro-scale features of network organization to macro-scale char-
acteristics of neurophysiological dynamics60. Yet another approach 
uses network science to ask questions about the processes that can 
potentially generate the topology of an empirical network. Such gen-
erative models can clarify the contributions of spatial embedding and 
other (non-spatial) wiring rules in shaping the network topology of 
the connectome61, and can also reveal potential factors driving the 
selection of functionally important network attributes62.  Finally, the 
application of concepts from algebraic topology (Fig. 3) attempts to 
discern non-random structure in networks by going beyond dyadic 
relations (two nodes linked by an edge) and considering non-dyadic, 
higher order relations among network nodes63–65, a goal that is com-
plementary to that motivating the use of graphs in which edges can 
link any number of nodes, or so-called hypergraphs66. This approach 
can identify non-random structure in structural connectivity of corti-
cal microcircuits67, such as unexpectedly high numbers of directed 
‘all-to-all’ connected cliques of neurons, or cavities in which edges 
are conspicuously absent68.

Time series analysis is a common basis for constructing edges  
in functional networks. Generally, different methods aim to extract 

covariance or correlation (hence delivering non-causal similarity-
based metrics of statistical dependence) and to estimate the direction 
and strength of causal influence. Although correlation-based metrics 
are generally simple to compute, the propensity of correlations to ‘fill 
in’ links among indirectly coupled nodes (transitive closure)69 tends 
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Figure 3 Algebraic topology and simplicial complexes. (a) Left, the traditional 
way in which to study networked systems including the brain is to examine 
patterns in pairwise relationships between nodes (dyads). Indeed, the dyad 
has traditionally been the fundamental unit of interest in graph theory 
and network science. Here we show an example brain network, composed 
exclusively of dyads. Right, in many cases, however, neural systems appear to 
employ higher order interactions139, which increase the complexity of neural 
codes that produce the wide range of behaviors observed in these systems140. 
To study these higher order interactions, one must expand one’s worldview to 
include units of interest that exceed the simple dyad. Using recent advances 
in the field of applied algebraic topology, we can study so-called simplicial 
complexes, which are generalizations of graphs that encode non-dyadic  
relationships63. Here we show representations of a zero-simplex (a node),  
a one-simplex (an edge between two nodes), a two-simplex (a filled triangle), 
etc. (b) Left, we can study the location of these simplices in brain networks, 
from the small scale of neurons to the large scale of brain regions. For  
example, we show a toy simplicial complex embedded in the human brain, 
and containing a zero-simplex, several one-simplices, a two-simplex and 
a three-simplex. Right, when doing so, it is interesting to characterize the 
locations of cliques (all-to-all connected subgraphs of any size) and cavities 
(a collection of n-simplices that are arranged so that they have an empty  
geometric boundary), which are structurally predisposed to be critical for in 
integrated (cliques) versus segregated (cavities) codes and computations.  
Here we show a two-clique (top) and a cavity bounded by four one-simplices 
(bottom). (c) It is also often interesting to study how networks evolve in  
time or how their internal structure depends on the weight of the edges 
between nodes. In these and similar scenarios, we can apply a powerful tool 
from algebraic topology called a filtration, which can represent a weighted 
simplicial complex as a series of unweighted simplicial complexes. We can 
then trace the evolution of specific cavities from one complex (one time point 
or one edge weight value) to another, as well as locate the moment of their 
creation or collapse. Collectively, this is called the persistent homology  
of the weighted simplicial complex, and it can be statistically quantified 
using a collection of functions called Betti curves, which record the number 
of cavities in each dimension. Here we show a filtration on edge weight,  
which begins with all nodes being disconnected because no edges exceed 
a threshold value τ. At subsequent points along the filtration, those nodes 
are connected by simplices that are composed of edges of weight greater 
than or equal to τ. This same sort of structure can be observed in a filtration 
of a growing network over time: the filtration begins with all nodes being 
disconnected because no edges exist. At subsequent points along the 
filtration, those nodes are connected by simplices that are composed  
of edges that have grown at later time points. Thus, filtrations allow the 
investigator to assess the organization of weighted simplicial complex 
representations of brain structure and dynamics as a function of edge  
weight, or as a function of time.
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to result in networks that are overly dense, clustered and modular, 
containing many dependencies that arise from indirect interactions 
in the underlying anatomy. Although computing partial correlations 
can address this issue and yield sparser networks, the resulting topolo-
gies are difficult to interpret, may regress away true interactions, and 
require many samples to achieve stability. Measures of directed influ-
ence based on temporal precedence cues such as Granger causality 
and transfer entropy result in directed edges that provide informa-
tion about the extent to which the past of one time series can predict 
the future of another. In this narrow sense, these networks portray 
potential causal relations among network nodes, and they have been 
shown to have some utility in systems of spiking neurons70 and electro-
physiological recordings. In contrast with time series analysis tools 
for functional networks, effective connectivity offers a model-based 
account of directed causal links among network elements that is 
derived by rigorous model selection criteria. Model-based effective 
connectivity is central to the framework of dynamic causal mode-
ling71, which allows the estimation of dynamic couplings among brain 
nodes and their modulation by time, task or sensory input.

As is the case in systems biology, there is a growing role for numeri-
cal simulations and computational models of brain circuits and sys-
tems in explaining and predicting empirical functional network data. 
These approaches can provide effective generative models of brain 
responses that simulate the activity of neural elements and their 
interactions. Simulation environments, such as The Virtual Brain at 
the level of whole-brain models72, Neuron at the level of neuronal 
circuits73, and OpenWorm specifically for the organism C. elegans74, 
generate neuronal time series resulting from the biophysical proper-
ties of neuronal elements that are linked by a network of structural 
(synaptic) couplings. Such forward modeling can be combined with 
model inversion that, constrained by model selection, allows infer-
ences on model parameters associated with candidate neurobiologi-
cal mechanisms75. Similar modeling and simulation approaches are 
applied to protein interaction and genetic regulatory networks76, can 
capture the translation of genotype to phenotype in whole cells77, and 
have become important tools in studies of social dynamics and col-
lective behavior78. The ever accelerating power and decreasing cost of 
computing has brought network-based simulations and mathematical 
models of neurobiological systems at all scales within the reach of 
most investigators.

Current frontiers
Network dynamics. One of the emerging frontiers of network neuro-
science is the investigation of network dynamics (Fig. 4). The broad 
question of how networks change encompasses at least two important 
and distinct dimensions79: how activity patterns can change on top 
of a fixed structural network (referred to as dynamics on networks) 
and how network edges themselves can reconfigure (referred to as 
dynamics of networks). Although most current investigations are 
focusing on one or the other of these two dimensions, future work 
will undoubtedly expand to develop methods and insights that strad-
dle both domains.

The concept of dynamics on networks builds on the notion that 
the complex physiological activity of neural systems is fundamen-
tally constrained by the patterns of connections between their ele-
ments. These processes include neuronal activation, the release of 
neurotransmitters, the editing of genetic expression, the utilization 
of energy in terms of cellular metabolism and the assembly of infor-
mation. How these processes depend on underlying connections 
between neurons, areas or genes is the perennial question of how 
form constrains function. The first forays into this question have 

emerged at the level of large-scale neuroimaging in humans, where 
activation patterns at rest can be partially predicted by the underlying 
network of white-matter tracts80,81. Modeling the evolution of these 
patterns can be tackled using first-order difference equations, oscil-
lators, neural mass models and other approaches82. Perhaps equally 
intriguingly, one can also exercise phenomenological models to gain 
an intuition regarding processes whose physiology is less well under-
stood, such as the trans-synaptic spread of prions thought to cause 
dementia83 or the propagation of information packets along parallel 
structural routes84.

Notably, changes in function can elicit changes in structure, lead-
ing to dynamics of networks. The first conception of dynamics of 
networks grew from the recognition that many physical and biologi-
cal systems display patterns of connections that change over time,  
in different contexts or in response to varying external demands. 
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Figure 4 Dynamic and multilayer networks. In the field of network science, 
two types of dynamic processes are studied in some detail: dynamics on 
networks and dynamics of networks. (a) Dynamics on networks indicates 
that the activity (or some other property of interest) of nodes changes as a 
function of time. Here we illustrate decreasing activity (pink), increasing 
activity (gray) and changes in the pattern of activity (blue) over time in distinct 
network modules or communities. (b) Dynamics of networks indicates that 
the edges of the network themselves change either in their existence/absence 
or in their strength. Here we illustrate the coalescence of modules (blue 
and yellow), as well as the transfer of allegiance of a single region from 
one module (pink) to another (yellow) over time. This latter process can be 
quantified using the statistic of network flexibility, and has been shown to 
be an important indicator of human learning141 and a correlate of individual 
differences in executive function142. (c) Although not yet common, studies 
addressing the combined problem of dynamics on and of networks will be of 
increasing importance in the coming years. There is a critical need to better 
understand the relationships between changes in connectivity and changes 
in activity, gray matter, neurotransmitter levels, genetic expression or other 
nodal properties. Methods to bridge these scales will be critical in advancing 
network neuroscience toward more mechanistic models and insights.  
(d) One particularly useful construct in the context of dynamic and 
multimodal networks is that of multilayer networks88. Multilayer networks 
are networks whose nodes may be connected by different types of edges, 
with each type being encoded in a different layer90. These layers could, for 
example, represent different time points, subjects, tasks, brain states, ages or 
imaging modalities. In multilayer networks, nodes in one layer are connected 
to corresponding nodes in other layers by identity links (a distinct sort of 
edge), which hardcode the non-independence of data obtained from these 
nodes. Here we show the simplest case in which all nodes and all edges exist 
in all layers, but multilayer network tools can also be used in cases in which 
nodes and edges change across layers. We also illustrate the simplest  
inter-layer connection pattern, with identity links connecting consecutive 
layers; however, alternative connection patterns are possible59.©
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Indeed, this recognition now pervades many areas of neuroscientific 
investigation, from the changing patterns of functional connectivity85 
to the patterns of genome folding over developmental timescales86 or 
genetic coexpression over evolutionary timescales87. Quantitatively 
characterizing and mathematically modeling these evolving patterns 
of connectivity was largely intractable before recent advances in the 
field of applied mathematics. So-called multilayer networks88 offer 
mathematically principled models of evolving networks as well as a 
battery of statistical variables to characterize their evolution. Initial 
applications of these tools to neuroimaging data have addressed ques-
tions of how connectivity between brain regions changes over the 
lifespan89, during behavioral adaptation or learning90, and across 
frequency domains91. However, these applications have only begun 
to scratch the surface of empirical avenues of inquiry in which pat-
terns of connections between neurophysiological elements evolve or 
change in a manner that is critical for system function. A current 
fundamental challenge lies in constructing appropriate generative 
models that can be used to infer the dynamic mechanisms potentially 
driving these network reconfigurations and how they might be altered 
in disease states92.

Although dynamics on networks and dynamics of networks are 
both important areas of research, emerging tools from machine learn-
ing are beginning to bring the two areas together to better understand 
the time-varying expression of sets of networks, where all networks 
in the set exist at every time point, but each network is expressed to 
differing amounts93. In addition, developing methods for understand-
ing the dynamics of networks-of-networks that are interconnected 
with one another across contexts and scales remains challenging94. 
Could changes in functional connectivity driven by task performance 
be predicted by an individual’s place in their social network95? Could 
changes in the interactions among individuals lead to changes in the 
inter-subject correlation in brain activity96? What are the meaningful 
(and tractable) classes of networks-of-networks that we can begin 
to understand? These and related questions will likely compose an 
increasing focus of network neuroscience in the immediate future.

Prediction. As it is still a relatively young field, network neuro-
science has focused on describing neuroscientific data in the lan-
guage of graph theory and network science, and it has begun to recast 
avenues of inquiry in terms of explicitly network-based hypotheses. 
However, this general paradigm shift underscores the necessity of 
complementing simple descriptions with mechanistic predictions97. 
Indeed, although network models are traditionally viewed as tools to 
quantify structure, they have a complementary role as tools to predict 
system function. Moreover, this predictive power can be used broadly 
across genetics, systems biology, neuroscience and social science.

According to a standard formal definition, the accuracy of a predic-
tion improves as the difference between the expected behavior and 
the observed behavior diminishes. Predictions of network dynamics, 
system function or other network-based phenotypes can be obtained 
in one of two ways: using black-box approaches such as those afforded 
by machine learning or using first-principles mechanistic models 
such as those developed in the field of theoretical physics. Although 
the former has rarely been explicitly combined with network neu-
roscience98, the latter has demonstrated initial utility in contexts as 
far ranging as predicting therapeutic targets in cellular regulatory 
networks99 and predicting seizure activity in medically refractory 
epilepsy100. These successes depend on a fundamental understand-
ing of the network interactions and the energy landscape defining 
how the brain moves between different states101, which predict not 
only common brain states, but also the probability of transitioning 

between them. In addition to methodological approaches to under-
standing these landscapes, open areas of inquiry include whether one 
can predict cognitive function from structural or functional network 
architecture102, predict disease onset or progression from early or pre-
clinical data103, predict behavioral responses to health messaging104, 
or predict optimal strategies for early intervention.

Perturbation, manipulation and control. Once a predictive model 
of a system is built, one has the potential to carefully perturb, manip-
ulate and indeed control the system with an explicit knowledge of 
the outcome (Fig. 5). Network neuroscience is poised to offer a new 
conceptual and computational framework in which to guide these 
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Figure 5 Controlling brain networks. Following a careful description of 
the network properties of the brain, we might wish to intervene: to push 
a diseased brain toward health or to enhance the function of a brain that 
might not be reaching its full potential. In the context of brain networks, this 
question becomes has provided a question of so-called ‘network control’, 
for which the field of engineering extensive and carefully validated solutions 
in recent years112. (a,b) Here we illustrate a problem in which we wish 
to modulate the activity of three brain regions (blue, peach, gold; a) that 
are connected both to one another and to other regions in the brain by a 
set of anatomical links of varying strength or weight (b). (c,d) We wish to 
determine the amount of control energy (which can take the form of brain 
stimulation or task demands) that must be injected into brain regions at 
each time point (c) to affect a continuous change in the amplitude of the 
three brain regions of interest from a (d), moving them from an initial state 
characterized by one pattern of activation to a target state characterized 
by a different pattern of activation. One way to address this problem is to 
model brain dynamics as a (linear or nonlinear) function of an initial state 
x, a structural adjacency matrix A and a control energy matrix C. Using 
techniques from network control theory, we can solve for the optimal control 
energy, which is usually defined as the smallest amount of energy required 
to affect the transition (from initial to final state) in a given time period T. 
Interesting problems include determining which regions can affect which 
types of control113, which regions form optimal targets or optimal drivers143, 
how many control points are required, and which transitions are preferred 
by the system. In many cases, the best model of dynamics is unknown, and 
in this case an engineering technique known as systems identification can 
be very useful; this technique reveals not only the model of dynamics, but 
also the structural matrix A that best explains regional time series. Note 
that the a matrix uncovered by systems identification might not be identical 
to an anatomical matrix of synaptic connections. In the coming years, we 
anticipate that these techniques, and their careful adaptions to neural 
systems, will prove to be particularly useful in the control of brain networks 
both for clinical purposes, for example, in optimizing transcranial magnetic 
stimulation to large-scale brain regions in the human brain144.
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interventions in a theoretically principled manner for maximal cogni-
tive enhancement or therapeutic benefit.

Here we take an eclectic view of what constitutes an intervention 
by including optogenetics, brain stimulation, lesions, neurofeedback, 
mood induction, task priming, training and task performance. What 
each of these manipulations has in common is the fact that they can 
be used to perturb (or change) brain state and its associated dynamics. 
Although this has been acknowledged for many decades, it has begun 
to be exploited to address explicitly network-based hypotheses105. For 
example, what network do we wish to (in)activate? And at what spa-
tial scale does this network operate, or at what spatial scale does this  

network go awry, for example, in the case of epilepsy (Fig. 6a–c)? 
What effect will focal perturbations have on network function106 
or network reconfiguration? Is there a predictable pattern of  
network recovery following disturbances resulting from stroke or 
other injury107?

The ability to conceptualize network-based hypotheses, coupled 
with the growing potential to modulate neural function across many 
spatial scales108, brings with it important engineering challenges109. 
How do we titrate the location, strength or spatiotemporal extent of a 
perturbation? How do we model the relative contributions of network 
structure and dynamics on the functional effects of perturbations? 
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Figure 6 Epilepsy as a multiscale network disorder amenable to control. (a–c) Epileptic activity can be observed across spatial scales, from the level of single 
neurons up through the level of large-scale areas. (a) Spatial configuration of neurons during an interictal spike in the stratum oriens of a mouse; scale bar 
represents 10 µm. Reproduced from ref. 145, Sarah Feldt Muldoon, Vincent Villette, Thomas Tressard, Arnaud Malvache, Susanne Reichinnek, Fabrice 
Bartolomei, Rosa Cossart, GABAergic inhibition shapes interictal dynamics in awake epileptic mice, Brain, 2015, 138, 10, 2875–2890, by permission of 
Oxford University Press. (b) Cellular activity over a scale of 30-µm clusters together dynamically, forming network modules each shown in a different color, 
and these clusters are altered in the epileptic brain indicating a microscale network disorder. Over long periods of time, these changes in activity alter the 
underlying structural connectivity between ensembles, permanently changing the anatomical constraints on neurophysiological processes. Reproduced 
from ref. 146, National Academy of Sciences. (c) This clustering at the level of neuronal ensembles is accompanied by a large-scale oscillatory signature 
in intracranial electrocorticographic recordings. Reproduced from ref. 147, National Academy of Sciences. (d,e) Neurological disorders such as epilepsy 
are amenable to interventions that are informed by notions of network control. (d) The large-scale dynamics of epilepsy are characterized by a spatially 
intricate and temporally evolving pattern of synchronization and desynchronization that suggests the presence of a homeostatic push-pull control mechanism 
(bottom), whereby a regulatory network outside of the seizure generating zone controls the spread of seizure activity (top). These data provide two distinct 
targets for surgical and stimulation-based intervention: the seizure-generating zone, and the seizure-regulating zone. Reproduced from ref. 116, Elsevier. 
(e) Exogenously controlling the dynamics in either of these zones using stimulation requires careful computational models of control mechanisms, optimal 
stimulation intensities and optimal targets of that stimulation as a function of time. For example, here we illustrate recent work that models these large-scale 
dynamics using Wilson-Cowan oscillators. A distributed control mechanism, in which control is enacted by all stimulation sites, may be useful for quieting 
seizure activity, particularly when the underlying structural network is relatively random (top). However, when the underlying structural connectivity displays 
a small-world organization, a blanket distributed control mechanism is less effective, and may instead need to be better tuned to control drivers in the 
regulatory or seizure-generating networks (bottom). Reprinted with permission from ref. 148 as follows: ShiNung Ching, Emery N. Brown & Mark A. Kramer, 
Phys. Rev. E, 86, 021920 (2012), Copyright 2012 by the American Physical Society.
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Drawing on the wealth of knowledge gleaned across the ancient field 
of physics, one realizes that one can only hope to answer these transla-
tional questions when one is able to construct a meaningful network-
based theory of brain function. A particularly promising example of 
such a theory lies in network control, a nascent field of engineering 
that has its roots in the 1970s110 and has been re-popularized more 
recently111. Network control combines estimates of network connec-
tivity with models of system dynamics to predict where in the system 
one should inject energy to push the system toward a desired target 
state or target dynamics112. Such a theory offers the fundamental 
backdrop against which to better understand cognitive control113, 
optimize stimulation for neurological disorders114, maintain and con-
trol levels of anesthesia115, and inform surgical or stimulation-based 
interventions such as in the case of epilepsy116 (Fig. 6d,e). Future 
efforts in using network neuroscience for translational purposes will 
hinge on the development of this or related theories to predict the 
effects of perturbations on network structure and function.

Crossing levels. Comprehensive multi-scale accounts of brain func-
tion are central objectives for neuroscience2, but how can such an 
understanding be achieved? Networks are not only encountered at  

virtually all scales of neurobiological systems, they also offer a promis-
ing theoretical and analytical framework for bridging these scales and 
for creating new insights about species commonalities and differences.  
A case in point is the potential for network models to facilitate  
integration across micro-, meso- and macro-connectomics. As dis-
cussed earlier, improvements in accuracy and scalability of macro-
connectome data acquisition and analysis may soon yield large-scale 
dense reconstructions of neural circuitry at the ultrastructural level 
(for example, see ref. 15). In parallel, statistics on cell types, lami-
nar profiles, connection probabilities, etc. can inform detailed circuit 
models with substantial gains in scale and coverage117–119. A combina-
tion of dense reconstruction and computational inference could then 
be used to construct cellular-resolution models of brain areas and 
eventually entire brain systems. Another case in point is the appli-
cation of network approaches to the comparison of networks across 
species120. Thus far, comparative studies have revealed some important 
commonalities (for example, shared attributes such as modules and 
hubs), but have also highlighted differences, such as in the organiza-
tion of inter-areal connectivity in the cerebral cortex of several primate 
species121,122. In future studies bridging scales and species, increas-
ingly sophisticated network science approaches for graph modeling, 
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dimensionality reduction and community detection, and extensions 
into multigraphs and spatial networks, will be important adjuncts.

Another bridge is that between structure and function, as  
illustrated above in the emerging frontier of network dynamics.  
Networks from connectomics provide a structural skeleton of physical 
links among neurons and brain areas: networks created by dynamic 
brain activity, although constrained by the anatomical couplings, form 
a rich dynamic repertoire of topologies that continually change across 
time. The fundamental role of structural constraints in defining a 
‘sub-space’ or manifold for brain dynamics is encountered in mes-
oscale neuronal circuits as well as in large-scale brain networks. In 
circuits, the computational roles and capacities of neurons are defined 
by network connectivity. In larger systems, coherently active networks 
and their fluctuations across time are shaped by anatomical projec-
tions. It must be noted that topology alone is insufficient to account 
for all of the observed variance, as the biophysical attributes of nodes 
and edges have a major role in shaping neural activation and coacti-
vation. Network science offers a set of tools specifically designed to 
capture different domains of network organization. For example, mul-
tiplex or multilayer networks can represent structural and functional 
connectivity in a single network model123. Computational models of 
network architecture allow simulations of collective network states 
and network dynamics across scales from neuronal populations to 
the whole brain72,80,82,118,119. Models of this kind can become useful 
tools for predicting the effects of manipulations and perturbations 
on network function, from simulating genetic knockout experi-
ments to rewiring of circuits, stimulation of specific cell types, effects  
of brain lesions, and varying conditions of neuromodulation and 
sensory input.

Networks can also bridge across data of very different types and 
from different domains of biology. One example is the joint investiga-
tion of gene coexpression patterns and patterns of brain connectivity 
(Fig. 7). Studies in the rodent nervous system have demonstrated that 
brain areas with similar gene transcription also maintain similar con-
nectivity profiles124, and that transcriptional patterns are more similar 
among pairs of areas that are directly anatomically connected than 
among unconnected pairs125. In human cerebral cortex, transcription 
patterns are more similar in coherently active functional networks126 
and exhibit correlations with activity levels observed during rest127. 
Transcriptional profiles also exhibit relationships with the topological 
roles of brain areas in the macroscale connectome. In the mouse brain, 
highly connected and highly central areas exhibit a common and dis-
tinct topological profile, specifically involving genes regulating oxida-
tive metabolism, suggestive of links between network topology and 
metabolic demand128. A separate study found evidence of elevated 
expression of genes associated with cognition, learning and memory 
in hub nodes of the mouse brain129. These studies raise important 
questions about the nature of the mechanisms that tie the topology 
of structural and functional brain networks to fundamental aspects 
of basic brain physiology.

Finally, crossing levels with the aid of network science is particu-
larly salient when considering the multiple markers, mechanisms and 
manifestations of brain disorders. For example, autism spectrum dis-
orders are associated with numerous genetic risk factors, disturbed 
connectivity among brain regions and heterogeneous behavioral phe-
notypes130. More complete understanding of autism etiology requires 
integration across genetic, neuroimaging and phenotypic data131. 
Here, concepts from multilayer multiscale network science will likely 
be of use. Tracking cross-level interactions among networks may also 
offer new approaches for therapeutic intervention and manipulation. 
For example, a recent meta-analysis suggested a possible association 

between aspects of social relationships and cognitive decline132. 
Mechanisms of brain networks and social networks become inter-
twined (Fig. 8) in phenomena, such as social cognition, that appear 
to be disturbed in a range of psychiatric conditions133, and in the 
history of environmental exposures and experiences that constitute 
human development134. Notably, interactions between levels occur 
not only from micro- to macroscales, but can also result in top-down 
causal effects of macro- on micro-scales. For example, genomic pro-
files and patterns of gene expression can be sensitively influenced by 
environmental perturbations135 or patterns of behavior136. Such links 
across levels of networks become critical when considering complex 
real-world problems such as those posed by the design of effective 
interventions and treatments in the context of public health137. They 
are also attractive targets for future investigation employing quantita-
tive tools and methods from network neuroscience.
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Figure 8 Crossing scales from brain networks to social networks. (a–c) As we  
interact with one another, our patterns of brain activity can track together, 
whether in a single voxel (a; inter-subject correlations), from a single voxel 
to other voxels (b; inter-subject functional correlation) or from any voxel 
to any other voxel (c; inter-subject functional covariance). These patterns 
can be studied from a network perspective using the tools of graph theory 
to better understand how relationships between individuals affect the 
similarities and differences in our patterns of brain activity. Taking the 
idea one step further, we can study how the patterns of brain activity in 
a person who is central in their social network differ from the patterns of 
brain activity in a person who is less central to their social network. Indeed, 
how our brains respond to or can be predicted from our social networks is 
a critical open question with direct import for health interventions at the 
large-scale of neighborhoods, cities, countries, and cultures (see also ref. 137).  
a–c adapted from ref. 149, Springer Nature, and d adapted from ref. 150, 
R. Schmaelzle, M.B. O’Donnell, J.O. Garcia, C.N.C. Cascio, J. Bayer,  
D. Bassett, J. Vettel and E.B. Falk.
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Network science tools are perfectly suited to accomplish the impor-
tant goal of crossing levels or scales of organization, integrating  
diverse data sets, and bridging existing disparate analyses. For  
example, the multilayer formalism recently developed in the field 
of applied mathematics88 provides a principled way in which two 
different imaging modalities that each provide estimates of connec-
tivity between the same nodes, such as structural connections and 
functional connections, can be linked. The same multilayer network 
formalism can also be used to link data across different levels of spa-
tial scale, where a node in one layer at a large spatial scale becomes 
a collection of nodes in the next layer at a smaller spatial scale. The 
multilayer framework allows the collection of statistics of network 
characteristics that are conserved or variable across modalities or 
across scales. Another important set of tools, annotated graphs—
sometimes also called decorated graphs in mathematics—provide a 
means of assigning attributes to nodes138. In an annotated graph, a 
brain region can be characterized by inter-nodal relationships (for 
example, edges) as well as intra-nodal characteristics (for example, 
gene expression levels, cytoarchitectural properties, activity magni-
tudes or morphological features). Statistics can then be used to cap-
ture the relationships between connectivity and nodal characteristics 
in a model-based manner. Notably, this annotated graph approach can 
be used to bridge common analytical approaches that focus on nodal 
properties, including both univariate and multivariate approaches, 
and the emerging analytical approaches from graph theory that focus 
on inter-nodal relationships. Finally, whether crossing scales, inte-
grating data or bridging analyses, network science also offers tools to 
capture higher order structure in data, including multi-omics data, 
using emerging concepts and algorithms from algebraic topology63–68 
and topological data analysis.

Conclusion
In this review, we have attempted to sketch the outlines of a new 
interdisciplinary field, which we call network neuroscience. The field 
gathers momentum as networks have become ubiquitous phenom-
ena encountered in empirical investigation as well as computational 
analysis and modeling of neurobiological systems at all scales. The 
ever-growing volume of big data in neuroscience demands not only 
advanced analytics and sound statistical inference, but it also calls for 
theoretical ideas that can unify our understanding of brain structure 
and function. Theory is indispensable, as it allows us to transform big 
data into ‘small data’ and, ultimately, knowledge—delivering compact 
descriptions of regularities, principles and laws that apply to the archi-
tecture and functioning of neural systems. We believe that network 
neuroscience can make an important contribution toward unifying 
an otherwise fractured discipline by providing a common conceptual 
framework and a common toolset to meet the challenges of modern 
neuroscience. Network neuroscience naturally connects with other 
important theoretical approaches such as dynamical systems, neural 
coding and statistical physics.

Effectively bridging network theory and empirical neuroscience 
will require new educational initiatives and training programs that 
provide strong grounding in both disciplines. If these goals can be 
accomplished, the network neuroscientist of the future will be in an 
excellent position to add to our understanding of the network mecha-
nisms that underpin brain structure and function.
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31. Mišić , B. & Sporns, O. From regions to connections and networks: new bridges 
between brain and behavior. Curr. Opin. Neurobiol. 40, 1–7 (2016).

32. Vogelstein, J.T. et al. Discovery of brainwide neural-behavioral maps via multiscale 
unsupervised structure learning. Science 344, 386–392 (2014).

33. Crossley, N.A. et al. Cognitive relevance of the community structure of the  
human brain functional coactivation network. Proc. Natl. Acad. Sci. USA 110, 
11583–11588 (2013).

34. Izquierdo, E.J. & Beer, R.D. Connecting a connectome to behavior: an ensemble 
of neuroanatomical models of C. elegans klinotaxis. PLoS Comput. Biol. 9, 
e1002890 (2013).

35. Fornito, A. & Bullmore, E.T. Connectomic intermediate phenotypes for psychiatric 
disorders. Front. Psychiatry 3, 32 (2012).

36. Ideker, T., Galitski, T. & Hood, L. A new approach to decoding life: systems 
biology. Annu. Rev. Genomics Hum. Genet. 2, 343–372 (2001).

37. Barabási, A.L. & Oltvai, Z.N. Network biology: understanding the cell’s functional 
organization. Nat. Rev. Genet. 5, 101–113 (2004).

38. Vidal, M., Cusick, M.E. & Barabási, A.L. Interactome networks and human disease. 
Cell 144, 986–998 (2011).

39. Geschwind, D.H. & Flint, J. Genetics and genomics of psychiatric disease. Science 
349, 1489–1494 (2015).

40. Barabási, A.L., Gulbahce, N. & Loscalzo, J. Network medicine: a network-based 
approach to human disease. Nat. Rev. Genet. 12, 56–68 (2011).

41. Fornito, A., Zalesky, A., Pantelis, C. & Bullmore, E.T. Schizophrenia, neuroimaging 
and connectomics. Neuroimage 62, 2296–2314 (2012).

42. de la Torre-Ubieta, L., Won, H., Stein, J.L. & Geschwind, D.H. Advancing the 
understanding of autism disease mechanisms through genetics. Nat. Med. 22, 
345–361 (2016).

43. Lazer, D. et al. Life in the network: the coming age of computational social 
science. Science 323, 721–723 (2009).

44. Onnela, J.P. & Rauch, S.L. Harnessing smartphone-based digital phenotyping  
to enhance behavioral and mental health. Neuropsychopharmacology 41,  
1691–1696 (2016).

45. Newman, M. Networks: An Introduction (Oxford University Press, 2010).
46. Fornito, A., Zalesky, A. & Bullmore, E. Fundamentals of Brain Network Analysis 

(Academic Press, 2016).
47. Bassett, D.S. & Bullmore, E.T. Small-world brain networks revisited. The 

Neuroscientist http://dx.doi.org/10.1177%2F1073858416667720 (2016).
48. van den Heuvel, M.P. & Sporns, O. Network hubs in the human brain. Trends 

Cogn. Sci. 17, 683–696 (2013).
49. Zamora-López, G., Zhou, C. & Kurths, J. Cortical hubs form a module for 

multisensory integration on top of the hierarchy of cortical networks. Front. 
Neuroinform. 4, 1 (2010).

50. van den Heuvel, M.P. & Sporns, O. Rich-club organization of the human 
connectome. J. Neurosci. 31, 15775–15786 (2011).

51. Markov, N.T. et al. Cortical high-density counterstream architectures. Science 
342, 1238406 (2013).

52. Chaudhuri, R., Knoblauch, K., Gariel, M.A., Kennedy, H. & Wang, X.J. A large-
scale circuit mechanism for hierarchical dynamical processing in the primate 
cortex. Neuron 88, 419–431 (2015).

53. Horvát, S. et al. Spatial embedding and wiring cost constrain the functional layout 
of the cortical network of rodents and primates. PLoS Biol. 14, e1002512 
(2016).

54. Betzel, R.F. et al. The modular organization of human anatomical brain networks: 
accounting for the cost of wiring. Network Neurosci. http://doi.org/10.1162/
NETN_a_00002 (2017).

55. Fornito, A., Zalesky, A. & Breakspear, M. Graph analysis of the human connectome: 
promise, progress, and pitfalls. Neuroimage 80, 426–444 (2013).

56. Sporns, O. & Betzel, R.F. Modular brain networks. Annu. Rev. Psychol. 67, 
613–640 (2016).

57. Hinne, M., Heskes, T., Beckmann, C.F. & van Gerven, M.A. Bayesian inference 
of structural brain networks. Neuroimage 66, 543–552 (2013).

58. Zalesky, A., Fornito, A. & Bullmore, E.T. Network-based statistic: identifying 
differences in brain networks. Neuroimage 53, 1197–1207 (2010).

59. Mucha, P.J., Richardson, T., Macon, K., Porter, M.A. & Onnela, J.P. Community 
structure in time-dependent, multiscale, and multiplex networks. Science 328, 
876–878 (2010).

60. Rosvall, M. & Bergstrom, C.T. An information-theoretic framework for resolving 
community structure in complex networks. Proc. Natl. Acad. Sci. USA 104, 
7327–7331 (2007).

61. Betzel, R.F. et al. Generative models of the human connectome. Neuroimage 124 
Pt A, 1054–1064 (2016).

62. Avena-Koenigsberger, A., Goñi, J., Solé, R. & Sporns, O. Network morphospace. 
J. R. Soc. Interface 12, 20140881 (2015).

63. Giusti, C., Ghrist, R. & Bassett, D.S. Two’s company, three (or more) is a simplex: 
Algebraic-topological tools for understanding higher-order structure in neural data. 
Preprint at https://arxiv.org/abs/1601.01704 (2016).

64. Courtney, O.T. & Bianconi, G. Generalized network structures: The configuration 
model and the canonical ensemble of simplicial complexes. Preprint at https://
arxiv.org/abs/1602.04110 (2016).

65. Sizemore, A., Giusti, C. & Bassett, D. Classification of weighted networks through 
mesoscale homological features. J Complex Netw http://dx.doi.org/10.1093/
comnet/cnw013 (2015).

66. Bassett, D.S., Wymbs, N.F., Porter, M.A., Mucha, P.J. & Grafton, S.T. Cross-linked 
structure of network evolution. Chaos 24, 013112 (2014).

67. Dotko, P. et al. Topological analysis of the connectome of digital reconstructions 
of neural microcircuits. Preprint at https://arxiv.org/abs/1601.01580 (2016).

68. Sizemore, A., Giusti, C., Betzel, R.F. & Bassett, D.S. Closures and Cavities  
in the Human Connectome. Preprint at https://arxiv.org/abs/1608.03520 
(2016).

69. Zalesky, A., Fornito, A. & Bullmore, E. On the use of correlation as a measure of 
network connectivity. Neuroimage 60, 2096–2106 (2012).

70. Nigam, S. et al. Rich-club organization in effective connectivity among cortical 
neurons. J. Neurosci. 36, 670–684 (2016).

71. Friston, K.J., Li, B., Daunizeau, J. & Stephan, K.E. Network discovery with DCM. 
Neuroimage 56, 1202–1221 (2011).

72. Jirsa, V.K., Sporns, O., Breakspear, M., Deco, G. & McIntosh, A.R. Towards the 
virtual brain: network modeling of the intact and the damaged brain. Arch. Ital. 
Biol. 148, 189–205 (2010).

73. Hines, M.L. & Carnevale, N.T. The NEURON simulation environment. Neural 
Comput. 9, 1179–1209 (1997).

74. Szigeti, B. et al. OpenWorm: an open-science approach to modeling Caenorhabditis 
elegans. Front. Comput. Neurosci. 8, 137 (2014).

75. Stephan, K.E., Iglesias, S., Heinzle, J. & Diaconescu, A.O. Translational 
perspectives for computational neuroimaging. Neuron 87, 716–732 (2015).

76. Karlebach, G. & Shamir, R. Modelling and analysis of gene regulatory networks. 
Nat. Rev. Mol. Cell Biol. 9, 770–780 (2008).

77. Karr, J.R. et al. A whole-cell computational model predicts phenotype from 
genotype. Cell 150, 389–401 (2012).

78. Castellano, C., Fortunato, S. & Loreto, V. Statistical physics of social dynamics. 
Rev. Mod. Phys. 81, 591 (2009).

79. Holme, P. Temporal networks. Phys. Rep. 519, 97–125 (2012).
80. Honey, C.J., Kötter, R., Breakspear, M. & Sporns, O. Network structure of cerebral 

cortex shapes functional connectivity on multiple time scales. Proc. Natl. Acad. 
Sci. USA 104, 10240–10245 (2007).

81. Goñi, J. et al. Resting-brain functional connectivity predicted by analytic measures 
of network communication. Proc. Natl. Acad. Sci. USA 111, 833–838 (2014).

82. Deco, G., Jirsa, V.K., Robinson, P.A., Breakspear, M. & Friston, K. The dynamic 
brain: from spiking neurons to neural masses and cortical fields. PLoS Comput. 
Biol. 4, e1000092 (2008).

83. Raj, A., Kuceyeski, A. & Weiner, M. A network diffusion model of disease 
progression in dementia. Neuron 73, 1204–1215 (2012).
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